眼睛干痒用什么眼药水比较好| 备孕要检查什么项目| 痛风挂什么科| 品红是什么颜色| 房颤什么症状| 感染hpv有什么症状| 胆管炎吃什么药| 什么是m属性| 高丽参是什么参| 血蛋白低会有什么影响| 嗓子疼咽口水都疼吃什么药| 去侍庙有什么禁忌| 花名是什么意思| 人为什么会中暑| 脱脂乳粉是什么| 中暑是什么症状| 戒奶涨奶痛有什么缓解方法| 肌红蛋白偏低说明什么| gxg是什么牌子| 办护照需要带什么| 饭后烧心是什么原因引起的| 胆囊充盈欠佳什么意思| 视力模糊什么原因| 眼袋大是什么原因引起的| 新疆人是什么民族| 金刚经讲的是什么| 水痘是什么| bf是什么| 2014是什么年| 坐围和臀围有什么区别| 狐狸和乌鸦告诉我们什么道理| 女人胯骨疼是什么原因| 立羽读什么| 脸发红发烫是什么原因| 脖子落枕贴什么膏药| 润字五行属什么| 硬脂酸是什么| 头发的主要成分是什么| 阴枣是什么| 哂是什么意思| tomorrow什么意思| 1997年出生属什么| 办身份证需要带什么| 序列是什么意思| 吃姜对身体有什么好处| star什么意思| 嫦娥是什么生肖| 证件照一般是什么底色| 阴道内壁是什么样的| 3.15是什么星座| 多西环素片主治什么| 补位是什么意思| 阴道口痒是什么原因| 善待是什么意思| 圆珠笔是什么笔| 乙肝两对半15阳性是什么意思| 眼睛干涩用什么眼药水好| 五彩缤纷是什么意思| 维生素b2有什么功效| 好吃懒做的动物是什么生肖| 肚子不舒服吃什么药| 胃不舒服想吐吃什么药| 什么无为| 22点是什么时辰| 为什么会得阴道炎| 1942年是什么年| autumn什么意思| 卵圆孔未闭挂什么科| 消肿吃什么药| 兆以上的计数单位是什么| 浓郁是什么意思| 晚上9点到11点是什么时辰| 三文鱼长什么样| bitch是什么意思| 十一月一号是什么星座| 猪肉馅饺子配什么菜| 虎都男装属于什么档次| 头疼是什么原因引起| 阿玛施属于什么档次| 肾结石可以吃什么| 慢性肠炎吃什么药| 大便化验隐血阳性什么意思| 75c是什么罩杯| hbcab偏高是什么意思| 一阴一阳是什么数字| 加油站为什么不能打电话| 梦见楼塌了是什么意思| 淋巴细胞百分比偏高是什么意思| 早上起床腰疼是什么原因| 封神是什么意思| 农历六月是什么生肖| 形影不离是什么意思| 婴儿什么时候开始说话| 己巳五行属什么| 朝鲜和韩国是什么关系| 眼睛痒用什么眼药水| 潜血是什么意思| 熟地有什么功效| 尿红细胞高是什么原因| 干姜和生姜有什么区别| 红头文件是什么意思| 胎监什么时候开始做| 血压低什么原因造成的| 心跳过速是什么原因| 宫内妊娠是什么意思| 梦到插秧是什么意思| 一帘幽梦是什么意思| 身经百战是什么意思| 10月是什么月| dr是什么意思| 血便是什么原因引起的| 猪鬃为什么是战略物资| 同型半胱氨酸查什么| 日加一笔变成什么字| 蓝风铃香水什么味道| 孕妇贫血吃什么补血最好| 淋巴细胞数高说明什么| 长公主是什么意思| crp偏高说明什么| 伍德氏灯检查什么| 一颗什么| 甘油三酯高是什么原因造成的| 哀大莫过于心死是什么意思| 头晕想吐吃什么药| 白蛋白是什么| 十二点是什么时辰| 糖醋排骨用什么醋好吃| 吃什么能增加免疫力| 看脑部挂什么科| 什么止疼药见效最快| 心理素质是什么意思| 11月出生是什么星座| 梦见自己掉头发是什么意思| 程度是什么意思| 烛是什么意思| 炒菜放什么调料最好吃| 现在最好的避孕方法是什么| 小跟班是什么意思| 视觉感受器是什么| 做梦梦见老婆出轨是什么意思| 汗斑是什么原因引起的| 蛤蜊是什么| 怀孕两个月出血是什么原因| 低烧吃什么药最好| 相手蟹吃什么| 打火机的气体是什么| 伏羲是什么意思| 人活着的意义是什么| 晚上睡不着是什么原因引起的| 脑供血不足头晕吃什么药| 交会是什么意思| 蘑菇是什么| 画是什么生肖| 苯磺酸氨氯地平片什么时候吃最好| 慢性咽炎是什么症状| 铁蛋白高是什么意思| 胆囊炎吃什么药好得快| 北戴河在什么地方| 什么人不能吃苦瓜| 前列腺有什么症状| 音准是什么意思| 人心叵测什么意思| 甲亢吃什么药最有效| 特仑苏是什么意思| 快递客服主要做什么| 吃小米粥有什么好处| 9月12号是什么星座| 胰腺炎为什么血糖高| 搬新家送什么礼物好| 肾不好挂什么科| nub是什么意思| 左眼跳代表什么| 乳头发黑是什么原因| 斯德哥尔摩是什么意思| 三文鱼为什么叫三文鱼| 1985年是什么命| 10年属什么生肖| 5月13号是什么星座| 牙疼不能吃什么| 耳鸣是什么原因导致的| 节制是什么意思| 男士带什么手串好| 消化不好吃什么| 今年是什么年啊| 鲷鱼是什么鱼| 戏谑是什么意思| 补钙最好的食物是什么| 蚕丝衣服用什么洗最好| 盆腔炎做什么检查能查出来| 十月二十二是什么星座| bv是什么品牌| 婴儿胎发什么时候剪最好| 洁身自爱是什么生肖| 子宫附件是什么意思| 肾结石少吃什么食物| 检查乙肝五项挂什么科| 嘴唇上长水泡是什么原因| 尿是红色的是什么原因| 未时是什么时候| 黑色碳素笔是什么笔| 莫代尔是什么| 酸碱度偏低是什么原因| 钙盐沉积是什么意思| 漫游什么意思| 公务员干什么工作| 金银花和什么搭配喝好| 贤淑是什么意思| 胆结石属于什么科| 菊苣别名叫什么| 次氯酸钠是什么| 肚子疼拉稀是什么原因| 肝部出现腹水是什么原因| 颈椎头晕吃点什么药| hpv病毒是什么原因引起的| 蛮夷是什么意思| 月食是什么意思| 欧阳修号什么| 干咳吃什么药| 眼睛胀疼是什么原因| 子宫破裂有什么征兆| audrey是什么意思| 睡觉打呼噜是什么病| 文殊菩萨是管什么的| 打了鸡血是什么意思| 小脑萎缩有什么症状| 胆红素偏高挂什么科| 情不自禁的意思是什么| 一日之计在于晨是什么生肖| 鱼在鱼缸底部不动为什么| 迎合是什么意思| 心肌缺血吃什么药管用| mizuno是什么品牌| 嗓子不舒服吃什么药| 慢性萎缩性胃炎是什么意思| 宝宝有口臭是什么原因引起的| 血糖高吃什么药最好| 福寿延绵是什么意思| 中秋节送什么水果好| 八字华盖是什么意思| 处女座女和什么星座最配| 高血压属于什么科| 蛾子吃什么| 容易脸红的人是什么原因| 鹅蛋脸适合戴什么眼镜| 今年27岁属什么生肖| 三月十二是什么星座| 膝盖积水是什么原因造成的| 白质脱髓鞘是什么病| 妹控是什么意思| 十一月份是什么星座| 鼻炎用什么药效果好| 大便干燥用什么药| 梦见蛇和鱼是什么意思周公解梦| 仙女座是什么星座| 花序是什么意思| 尿频尿多吃什么药好| 管型尿是什么意思| camel是什么意思| 切除子宫对身体有什么伤害| ym是什么衣服品牌| MR医学上是什么意思| 一进去就射是什么原因| 骶管囊肿是什么意思| 大脚趾头麻木是什么原因| 百度

习近平两会“典”亮新时代

百度 发表完获奖感言后,张院士直接走下台,最后居然连奖杯也忘了拿,这科学家太可爱了......张弥曼是新中国培养的第一批地质大学生,后被选拔赴莫斯科大学学习古生物学,从此踏入生命演化失落的世界包括人在内的四足动物起源过程。

Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control (the channel access protocol).[1]

edit

The link spectral efficiency of a digital communication system is measured in bit/s/Hz,[2] or, less frequently but unambiguously, in (bit/s)/Hz. It is the net bit rate (useful information rate excluding error-correcting codes) or maximum throughput divided by the bandwidth in hertz of a communication channel or a data link. Alternatively, the spectral efficiency may be measured in bit/symbol, which is equivalent to bits per channel use (bpcu), implying that the net bit rate is divided by the symbol rate (modulation rate) or line code pulse rate.

Link spectral efficiency is typically used to analyze the efficiency of a digital modulation method or line code, sometimes in combination with a forward error correction (FEC) code and other physical layer overhead. In the latter case, a "bit" refers to a user data bit; FEC overhead is always excluded.

The modulation efficiency in bit/s is the gross bit rate (including any error-correcting code) divided by the bandwidth.

Example 1: A transmission technique using one kilohertz of bandwidth to transmit 1,000 bits per second has a modulation efficiency of 1 (bit/s)/Hz.
Example 2: A V.92 modem for the telephone network can transfer 56,000 bit/s downstream and 48,000 bit/s upstream over an analog telephone network. Due to filtering in the telephone exchange, the frequency range is limited to between 300 hertz and 3,400 hertz, corresponding to a bandwidth of 3,400 ? 300 = 3,100 hertz. The spectral efficiency or modulation efficiency is 56,000/3,100 = 18.1 (bit/s)/Hz downstream, and 48,000/3,100 = 15.5 (bit/s)/Hz upstream.

An upper bound for the attainable modulation efficiency is given by the Nyquist rate or Hartley's law as follows: For a signaling alphabet with M alternative symbols, each symbol represents N = log2 M bits. N is the modulation efficiency measured in bit/symbol or bpcu. In the case of baseband transmission (line coding or pulse-amplitude modulation) with a baseband bandwidth (or upper cut-off frequency) B, the symbol rate can not exceed 2B symbols/s in view to avoid intersymbol interference. Thus, the spectral efficiency can not exceed 2N (bit/s)/Hz in the baseband transmission case. In the passband transmission case, a signal with passband bandwidth W can be converted to an equivalent baseband signal (using undersampling or a superheterodyne receiver), with upper cut-off frequency W/2. If double-sideband modulation schemes such as QAM, ASK, PSK or OFDM are used, this results in a maximum symbol rate of W symbols/s, and in that the modulation efficiency can not exceed N (bit/s)/Hz. If digital single-sideband modulation is used, the passband signal with bandwidth W corresponds to a baseband message signal with baseband bandwidth W, resulting in a maximum symbol rate of 2W and an attainable modulation efficiency of 2N (bit/s)/Hz.

Example 3: A 16QAM modem has an alphabet size of M = 16 alternative symbols, with N = 4 bit/symbol or bpcu. Since QAM is a form of double sideband passband transmission, the spectral efficiency cannot exceed N = 4 (bit/s)/Hz.
Example 4: The 8VSB (8-level vestigial sideband) modulation scheme used in the ATSC digital television standard gives N=3 bit/symbol or bpcu. Since it can be described as nearly single-side band, the modulation efficiency is close to 2N = 6 (bit/s)/Hz. In practice, ATSC transfers a gross bit rate of 32 Mbit/s over a 6 MHz wide channel, resulting in a modulation efficiency of 32/6 = 5.3 (bit/s)/Hz.
Example 5: The downlink of a V.92 modem uses a pulse-amplitude modulation with 128 signal levels, resulting in N = 7 bit/symbol. Since the transmitted signal before passband filtering can be considered as baseband transmission, the spectral efficiency cannot exceed 2N = 14 (bit/s)/Hz over the full baseband channel (0 to 4 kHz). As seen above, a higher spectral efficiency is achieved if we consider the smaller passband bandwidth.

If a forward error correction code is used, the spectral efficiency is reduced from the uncoded modulation efficiency figure.

Example 6: If a forward error correction (FEC) code with code rate 1/2 is added, meaning that the encoder input bit rate is one half the encoder output rate, the spectral efficiency is 50% of the modulation efficiency. In exchange for this reduction in spectral efficiency, FEC usually reduces the bit-error rate, and typically enables operation at a lower signal-to-noise ratio (SNR).

An upper bound for the spectral efficiency possible without bit errors in a channel with a certain SNR, if ideal error coding and modulation is assumed, is given by the Shannon–Hartley theorem.

Example 7: If the SNR is 1, corresponding to 0 decibel, the link spectral efficiency can not exceed 1 (bit/s)/Hz for error-free detection (assuming an ideal error-correcting code) according to Shannon–Hartley regardless of the modulation and coding.

Note that the goodput (the amount of application layer useful information) is normally lower than the maximum throughput used in the above calculations, because of packet retransmissions, higher protocol layer overhead, flow control, congestion avoidance, etc. On the other hand, a data compression scheme, such as the V.44 or V.42bis compression used in telephone modems, may however give higher goodput if the transferred data is not already efficiently compressed.

The link spectral efficiency of a wireless telephony link may also be expressed as the maximum number of simultaneous calls over 1 MHz frequency spectrum in erlangs per megahertz, or E/MHz. This measure is also affected by the source coding (data compression) scheme. It may be applied to analog as well as digital transmission.

In wireless networks, the link spectral efficiency can be somewhat misleading, as larger values are not necessarily more efficient in their overall use of radio spectrum. In a wireless network, high link spectral efficiency may result in high sensitivity to co-channel interference (crosstalk), which affects the capacity. For example, in a cellular telephone network with frequency reuse, spectrum spreading and forward error correction reduce the spectral efficiency in (bit/s)/Hz but substantially lower the required signal-to-noise ratio in comparison to non-spread spectrum techniques. This can allow for much denser geographical frequency reuse that compensates for the lower link spectral efficiency, resulting in approximately the same capacity (the same number of simultaneous phone calls) over the same bandwidth, using the same number of base station transmitters. As discussed below, a more relevant measure for wireless networks would be system spectral efficiency in bit/s/Hz per unit area. However, in closed communication links such as telephone lines and cable TV networks, and in noise-limited wireless communication system where co-channel interference is not a factor, the largest link spectral efficiency that can be supported by the available SNR is generally used.

System spectral efficiency or area spectral efficiency

edit

In digital wireless networks, the system spectral efficiency or area spectral efficiency is typically measured in (bit/s)/Hz per unit area, in (bit/s)/Hz per cell, or in (bit/s)/Hz per site. It is a measure of the quantity of users or services that can be simultaneously supported by a limited radio frequency bandwidth in a defined geographic area.[1] It may for example be defined as the maximum aggregated throughput or goodput, i.e. summed over all users in the system, divided by the channel bandwidth and by the covered area or number of base station sites. This measure is affected not only by the single-user transmission technique, but also by multiple access schemes and radio resource management techniques utilized. It can be substantially improved by dynamic radio resource management. If it is defined as a measure of the maximum goodput, retransmissions due to co-channel interference and collisions are excluded. Higher-layer protocol overhead (above the media access control sublayer) is normally neglected.

Example 8: In a cellular system based on frequency-division multiple access (FDMA) with a fixed channel allocation (FCA) cellplan using a frequency reuse factor of 1/4, each base station has access to 1/4 of the total available frequency spectrum. Thus, the maximum possible system spectral efficiency in (bit/s)/Hz per site is 1/4 of the link spectral efficiency. Each base station may be divided into 3 cells by means of 3 sector antennas, also known as a 4/12 reuse pattern. Then each cell has access to 1/12 of the available spectrum, and the system spectral efficiency in (bit/s)/Hz per cell or (bit/s)/Hz per sector is 1/12 of the link spectral efficiency.

The system spectral efficiency of a cellular network may also be expressed as the maximum number of simultaneous phone calls per area unit over 1 MHz frequency spectrum in E/MHz per cell, E/MHz per sector, E/MHz per site, or (E/MHz)/m2. This measure is also affected by the source coding (data compression) scheme. It may be used in analog cellular networks as well.

Low link spectral efficiency in (bit/s)/Hz does not necessarily mean that an encoding scheme is inefficient from a system spectral efficiency point of view. As an example, consider Code Division Multiplexed Access (CDMA) spread spectrum, which is not a particularly spectral-efficient encoding scheme when considering a single channel or single user. However, the fact that one can "layer" multiple channels on the same frequency band means that the system spectrum utilization for a multi-channel CDMA system can be very good.

Example 9: In the W-CDMA 3G cellular system, every phone call is compressed to a maximum of 8,500 bit/s (the useful bitrate), and spread out over a 5 MHz wide frequency channel. This corresponds to a link throughput of only 8,500/5,000,000 = 0.0017 (bit/s)/Hz. Let us assume that 100 simultaneous (non-silent) calls are possible in the same cell. Spread spectrum makes it possible to have as low a frequency reuse factor as 1, if each base station is divided into 3 cells by means of 3 directional sector antennas. This corresponds to a system spectrum efficiency of over 1 × 100 × 0.0017 = 0.17 (bit/s)/Hz per site, and 0.17/3 = 0.06 (bit/s)/Hz per cell or sector.

The spectral efficiency can be improved by radio resource management techniques such as efficient fixed or dynamic channel allocation, power control, link adaptation and diversity schemes.

A combined fairness measure and system spectral efficiency measure is the fairly shared spectral efficiency.

Comparison table

edit

Examples of predicted numerical spectral efficiency values of some common communication systems can be found in the table below. These results will not be achieved in all systems. Those further from the transmitter will not get this performance.

Spectral efficiency of common communication systems
Service Standard Launched,
year
Max. net bit rate
per carrier and
spatial stream,
R (Mbit/s)
Bandwidth
per carrier,
B (MHz)
Max. link spectral efficiency,
R/B ( bit/(s?Hz) )
Typical reuse factor, 1/K System spectral efficiency,
R/B?K ( bit/(s?Hz) ) per site)
SISO MIMO
1G cellular NMT 450 modem 1981 0.0012 0.025 0.45 0.142857 1?7 0.064
1G cellular AMPS modem 1983 0.0003[3] 0.030 0.001 0.142857 1?7[4] 0.0015
2G cellular GSM 1991 0.104 0.013 × 8 timeslots = 0.104 0.200 0.2 0.52 0.1111111 1?9 (1?3[5] in 1999) 0.17000 0.17[5] (in 1999)
2G cellular D-AMPS 1991 0.039 0.013 × 3 timeslots = 0.039 0.030 1.3 0.1111111 1?9 (1?3[5] in 1999) 0.45 0.45[5] (in 1999)
2.75G cellular CDMA2000 1× voice 2000 0.0096 0.0096 per phone call × 22 calls 1.2288 0.0078 per call 1 0.172 (fully loaded)
2.75G cellular GSM + EDGE 2003 0.384 (typ. 0.20) 0.2 1.92 (typ. 1.00) 0.33333 1?3 0.33[5]
2.75G cellular IS-136HS + EDGE 0.384 (typ. 0.27) 0.200 1.92 (typ. 1.35) 0.33333 1?3 0.45[5]
3G cellular WCDMA FDD 2001 0.384 5 0.077 1 0.51
3G cellular CDMA2000 1× PD 2002 0.153 1.2288 0.125 1 0.1720 (fully loaded)
3G cellular CDMA2000 1×EV-DO Rev.A 2002 3.072 1.2288 2.5 1 1.3
Fixed WiMAX IEEE 802.16d 2004 96 20 4.8 0.25 1?4 1.2
3.5G cellular HSDPA 2007 21.1 5 4.22 1 4.22
4G MBWA iBurst HC-SDMA 2005 3.9 0.625 7.3 [6] 1 7.3
4G cellular LTE 2009 81.6 20 4.08 16.32 (4×4) [7] 1 (0.33333 1?3 at the perimeters[8]) 16.32
4G cellular LTE-Advanced 2013[9] 75 20 3.75 30.00 (8×8) [7] 1 (0.33333 1?3 at the perimeters[8]) 30
Wi-Fi IEEE 802.11a/g 2003 54 20 2.7 0.33333 1?3[citation needed] 0.900
Wi-Fi IEEE 802.11n (Wi-Fi 4) 2007 72.2 (up to 150) 20 (up to 40) 3.61 (up to 3.75) Up to 15.0 (4×4, 40 MHz) 0.33333 1?3[citation needed] 5.0 (4×4, 40 MHz)
Wi-Fi IEEE 802.11ac (Wi-Fi 5) 2012 433.3 (up to 866.7) 80 (up to 160) 5.42 Up to 43.3 (8×8, 160 MHz)[10] 0.33333 1?3[citation needed] 14.4 (8×8, 160 MHz)
Wi-Fi IEEE 802.11ax (Wi-Fi 6) 2019 600.5 (up to 1201) 80 (up to 160) 7.5 Up to 60 (8×8, 160 MHz) 0.33333 1?3[citation needed] 20 (8×8, 160 MHz)
WiGig IEEE 802.11ad 2013 6756 2160 3 1[citation needed] 3
Trunked radio system TETRA, low FEC 1998 0.019 4 timeslots = 0.019 (0.029 without FEC)[11][12][13] 0.025 0.8 0.142857 1?7[14] 0.1
Trunked radio system TETRA II with TEDS, 64-QAM, 150 kHz, low FEC 2011 0.538 4 timeslots = 0.538[11][12][13] 0.150 (scalable to 0.025) 3.6
Digital radio DAB 1995 0.576 to 1.152 1.712 0.34 to 0.67 0.200 1?5 0.07 to 0.13
Digital radio DAB with SFN 1995 0.576 to 1.152 1.712 0.34 to 0.67 1 0.34 to 0.67
Digital TV DVB-T 1997 31.67 (typ. 24)[15] 8 4.0 (typ. 3.0) 0.143 1?7[16] 0.57
Digital TV DVB-T with SFN 1996 31.67 (typ. 24)[15] 8 4.0 (typ. 3.0) 1 4.0 (typ. 3.0)
Digital TV DVB-T2 2009 45.5 (typ. 40)[15] 8 5.7 (typ. 5.0) 0.143 1?7[16] 0.81
Digital TV DVB-T2 with SFN 2009 45.5 (typ. 40)[15] 8 5.7 (typ. 5.0) 1 5.7 (typ. 5.0)
Digital TV DVB-S 1995 33.8 for 5.1 C/N (44.4 for 7.8 C/N)[17] 27.5 1.2 (1.6) 0.250 1?4[18] 0.3 (0.4)
Digital TV DVB-S2 2005 46 for 5.1 C/N (58.8 for 7.8 C/N)[17] 30 (typ.) 1.5 (2.0) 0.250 1?4[18] 0.4 (0.5)
Digital TV ATSC with DTx 1996 32 19.39 1.6 1 3.23
Digital TV DVB-H 2007 5.5 to 11 8 0.68 to 1.4 0.200 1?5 0.14 to 0.28
Digital TV DVB-H with SFN 2007 5.5 to 11 8 0.68 to 1.4 1 0.68 to 1.4
Digital cable TV DVB-C 256-QAM mode 1994 38 6 6.33
Broadband CATV modem DOCSIS 3.1 QAM-4096, 25 kHz OFDM spacing, LDPC 2016 1890[19][20] 192 9.84
Broadband modem ADSL2 downlink 12 0.962 12.47
Broadband modem ADSL2+ downlink 28 2.109 13.59
Telephone modem V.92 downlink 1999 0.056 0.004 14.0

N/A means not applicable.

See also

edit

References

edit
  1. ^ a b Guowang Miao, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, ISBN 1107143217, 2016.
  2. ^ Sergio Benedetto and Ezio Biglieri (1999). Principles of Digital Transmission: With Wireless Applications. Springer. ISBN 0-306-45753-9.
  3. ^ C. T. Bhunia, Information Technology Network And Internet, New Age International, 2006, page 26.
  4. ^ Lal Chand Godara, "Handbook of antennas in wireless communications", CRC Press, 2002, ISBN 9780849301247
  5. ^ a b c d e f Anders Furusk?r, Jonas N?slund and H?kan Olofsson (1999), "Edge—Enhanced data rates for GSM and TDMA/136 evolution", Ericsson Review no. 1
  6. ^ "KYOCERA's iBurst(TM) System Offers High Capacity, High Performance for the Broadband Era".
  7. ^ a b "4G LTE-Advanced Technology Overview - Keysight (formerly Agilent's Electronic Measurement)". www.keysight.com.
  8. ^ a b Giambene, Giovanni; Ali Yahiya, Tara (1 November 2013). "LTE planning for Soft Frequency Reuse". 2013 IFIP Wireless Days (WD). pp. 1–7. doi:10.1109/WD.2013.6686468. ISBN 978-1-4799-0543-0. S2CID 27200535 – via ResearchGate.
  9. ^ "LTE-Advanced Archives - ExtremeTech". ExtremeTech. 25 April 2019.
  10. ^ "Whitepaper" (PDF). www.arubanetworks.com.
  11. ^ a b "TETRA vs TETRA2-Basic difference between TETRA and TETRA2". www.rfwireless-world.com.
  12. ^ a b "Application notes" (PDF). cdn.rohde-schwarz.com.
  13. ^ a b "Brochure" (PDF). tetraforum.pl.
  14. ^ "Data". cept.org.
  15. ^ a b c d "Fact sheet" (PDF). www.dvb.org.
  16. ^ a b "List publication" (PDF). mns.ifn.et.tu-dresden.de.
  17. ^ a b "Factsheet" (PDF). www.dvb.org.
  18. ^ a b Christopoulos, Dimitrios; Chatzinotas, Symeon; Zheng, Gan; Grotz, Jo?l; Ottersten, Bj?rn (4 May 2012). "Linear and nonlinear techniques for multibeam joint processing in satellite communications". EURASIP Journal on Wireless Communications and Networking. 2012 (1). doi:10.1186/1687-1499-2012-162.
  19. ^ "Info" (PDF). scte-sandiego.org.
  20. ^ [1]
左眼跳是什么原因 罗刹女是什么意思 黑色记号笔用什么能擦掉 一个月一个亏念什么 莫名是什么意思
月月红是什么花 阿玛尼手表属于什么档次 什么是钙化点 什么叫风热感冒 猪八戒有什么优点
全距是什么意思 梦见生孩子是什么征兆 园字五行属什么 66岁属什么 梦见李子是什么意思
巴适是什么意思 颈椎病头晕吃什么药好 锦鲤什么意思 黄芪的功效与作用是什么 消心痛又叫什么
环切手术是什么chuanglingweilai.com 人体最大的排毒器官是什么hcv8jop9ns0r.cn 出痧的颜色代表什么hcv8jop9ns5r.cn 甲鱼和什么食物相克hcv9jop1ns6r.cn 女的肾虚是什么原因引起的hcv8jop8ns4r.cn
失去自我是什么意思hcv7jop7ns3r.cn 疤痕痒是什么原因hcv8jop8ns4r.cn 风湿免疫科是什么病adwl56.com 什么东西护肝养肝hanqikai.com 痰饮是什么意思hcv8jop9ns4r.cn
孕妇吃什么长胎不长肉hcv7jop5ns0r.cn 粉尘螨过敏是什么意思hcv8jop2ns1r.cn 七月半是什么日子hcv9jop4ns6r.cn 鼻炎吃什么药最好hcv9jop5ns0r.cn 家有一老如有一宝是什么意思hcv9jop4ns0r.cn
茧是什么意思hcv9jop7ns0r.cn 中秋节是什么时候hcv8jop9ns9r.cn 花青素是什么颜色hcv8jop2ns4r.cn 什么是一二三级医院hcv8jop8ns8r.cn 什么的知了hcv7jop9ns5r.cn
百度