吃什么东西增强免疫力| 自然流产是什么症状| 孙策是孙权的什么人| 瞬息什么| 金牛女跟什么星座最配| 夏令时是什么| 先天性巨结肠有什么症状| 紫微斗数是什么| 毛囊炎长什么样| 国字脸适合什么发型| 打呼噜吃什么药最管用| 鲸鱼属于什么类动物| 胎教什么时候开始最好| 莲藕什么时候种植最佳| 大便出血是什么原因引起的| 产后腰疼是什么原因| 饭后烧心是什么原因引起的| 什么叫相向而行| 1998年属虎的是什么命| 屈光检查是什么| 虫草什么时间吃最好| 什么泡茶好喝| 甲亢可以吃什么| 过敏性紫癜有什么危害| 什么是纯净物| 怀孕吃火龙果对胎儿有什么好| 酸麻胀痛痒各代表什么| 智齿什么时候长| 感化是什么意思| 淋巴结清扫是什么意思| 经常头痛什么原因| 滇红是什么茶| 刘五行属性是什么| 蓝色药片是什么药| 什么什么不动| 4月25号什么星座| inr医学上是什么意思| 吃苋菜有什么好处| 桃皮绒是什么面料| 晨起嘴苦是什么原因| 硬核什么意思| 下肢水肿吃什么药| 定向招生是什么意思| 梦见老人去世预示什么| 喘是什么原因造成的| 南瓜不能和什么食物一起吃| 香菜吃多了有什么坏处| 西夏国是现在什么地方| 工字可以加什么偏旁| 失眠为什么开奥氮平片| 白事随礼钱有什么讲究| 学分是什么意思| 什么是食品安全| 女生吃什么补气血| 湿疹是什么原因引起的| sss是什么意思| 心脏病吃什么食物好| 脚肿什么原因| 猕猴桃什么时候吃最好| esse是什么牌子的烟| 苋菜与什么食物相克| 嗓子痛什么原因| 右佐匹克隆是什么药| 丁胺卡那又叫什么药名| 出虚汗是什么原因引起的怎么调理| 保护眼睛用什么眼药水| 工装是什么| 什么是磁共振检查| 狗取什么名字好| meme什么意思| 月朔是什么意思| 心服口服是什么意思| 风光秀丽的什么| 樱花的花语是什么| 甜字五行属什么| 指甲盖凹陷是什么原因| 幕后是什么意思| 梦见吃酒席是什么预兆| 右下眼皮跳是什么预兆| josiny是什么牌子| 二个月不来月经是什么原因| 梦见去看病是什么意思| 皮脂腺囊肿吃什么消炎药| 见红是什么意思| 什么水不能喝脑筋急转弯| 烧心吃什么食物好得快| 灯光什么| 鸡眼膏为什么越贴越疼| 什么鱼没有刺| 直肠炎吃什么药效果好| 胃一阵一阵的疼是什么原因| 梦到羊是什么意思| 飓风什么意思| 伊朗是什么民族| 节节草煮水喝治什么病| 吃什么可以增强免疫力| 园五行属什么| 豆角长什么样| 天蝎座女和什么星座最配| 铮字五行属什么| 耳洞为什么会发臭| 邪火是什么意思| 左眼皮一直跳什么预兆| 李世民是什么民族| 血糖高做什么运动好| 脑梗适合吃什么食物| 风湿属于什么科| 做爱是什么感觉| 1月16日是什么星座| 头颅mri是什么检查| 十月十号是什么星座| 阴历三月是什么星座| 相濡以沫什么意思| 高血压2级是什么意思| 什么球不能拍| 平年是什么意思| 引产挂什么科| 腹部痛是什么原因| 拜阿司匹林什么时间吃最好| 安道尔微信暗示什么| 头晕头痛吃什么药| 穿刺是什么检查| 麒麟什么意思| 早孕试纸什么时候测最准确| 今年56岁属什么生肖| 左侧卵巢囊性回声是什么意思| 13什么意思| 颠勺是什么意思| 吃头孢不能吃什么| 退行性改变是什么意思| 低钾会出现什么症状| 晨字属于五行属什么| 黑魔鬼烟为什么是禁烟| 断章取义什么意思| 花甲不能和什么一起吃| 梦见长白头发是什么意思| 什么是相向而行| 反流性食管炎吃什么药好| 白萝卜不能和什么一起吃| 女鼠配什么属相最好| 压床是什么意思| 一什么水珠| 敛肺是什么意思| 熬中药用什么锅| haze是什么意思| 骨髓抑制是什么意思| 尿检是检查什么的| 川芎有什么功效| 一什么雪花| loho眼镜属于什么档次| 精神病人最怕什么刺激| 环孢素是什么药| 为什么孩子要跟爸爸姓| 成人晚上磨牙是什么原因| 心火旺吃什么| 1972年出生属什么生肖| 渣渣辉什么意思| 下饭是什么意思| 胃酸反酸水吃什么药| 过敏性鼻炎吃什么药| 逝者已矣生者如斯是什么意思| 李子不能和什么一起吃| 天梭表什么档次| 风疹吃什么药| 火牛命五行缺什么| 什么是钓鱼执法| xpe是什么材料| 12朵玫瑰代表什么意思| 省委副书记什么级别| 什么叫高危性行为| 天地不仁以万物为刍狗是什么意思| 超负荷是什么意思| hpv吃什么药| 什么是凯格尔运动| 高血压吃什么降压药| 蛮什么意思| 抗心磷脂抗体是什么| 大便化验隐血阳性什么意思| 冬天有什么水果| 数字3代表什么意思| 银灰色五行属什么| 流感为什么晚上会比白天严重| 窦性心动过速是什么原因| 嘴巴里面起泡是什么原因引起的| 吃什么能排出胆结石| 人为什么打哈欠| 筋是什么| 为什么拉屎会有血| 什么的珍珠| 为什么蛋皮会痒| 水洗棉是什么| 移植后吃什么水果好| 雌二醇是什么意思| 打一个喷嚏代表什么| 孩子注意力不集中是什么原因| 人有三急指的是什么| 胆经不通吃什么中成药| 蚊子除了吸血还吃什么| 奥运五环绿色代表什么| 上海最高楼叫什么大厦有多少米高| 脚踏一星是什么命| 一个壳一个心念什么| 为什么会得心脏病| 火花是什么| 男人的精子对女人有什么好处| 左眼跳什么右眼跳什么| 下巴起痘痘是什么原因| 一刻是什么意思| 五指毛桃长什么样| 男孩学什么专业好| 肠鸣是什么原因引起的| 达泊西汀有什么副作用| 肌肉劳损吃什么药| 乐哉是什么意思| 国师是什么生肖| 多事之秋是什么意思| 柚子是什么季节| 足字旁的字与什么有关| 胆切除后吃什么好| 乳痈是什么病| 牛黄清心丸治什么病| 戒断反应是什么| 高血压适合吃什么水果| 积德是什么意思| 日久生情是什么意思| 葡萄糖阳性是什么意思| 鸭肉和什么一起炖好吃| 儿童过敏性鼻炎吃什么药好| at什么意思| 莲花代表什么象征意义| 得莫利是什么意思| 地区和市有什么区别| 背后长疙瘩是什么原因| 排卵期是什么| 笑点低是什么意思| 春什么秋什么的成语| 登门拜访是什么意思| 关节间隙变窄什么意思| 梦见被蛇咬了是什么意思| 鸡内金是什么| 水解奶粉是什么意思| 什么什么情深| 余光是什么意思| 表水是什么意思| 不领情是什么意思| 梦见蛇是什么预兆| 吃什么食物养肝护肝| rosa是什么意思| 一月18号是什么星座| 印度什么人种| 肝胆湿热用什么药| 爱是什么词| 抵抗力差吃什么| o3是什么| 解痉镇痛酊有什么功效| 马蜂窝治什么病最好| 什么东西去火| 血常规五项能检查出什么病| 外阴瘙痒用什么洗液| 10.25是什么星座| 殿后和垫后有什么区别| 淋巴细胞是什么意思| 痛心疾首的疾是什么意思| 手指甲紫色是什么原因| 百度

从严治党进行时——党的十八大以来中央国家机关贯彻落实全面从严治党要求成果巡礼

(Redirected from Trapezoidal)
百度 来年,这里将成为一片浓荫,为省会改善生态,为群众增添景致。

Trapezoid (American English)
Trapezium (British English)
Trapezoid or trapezium
Typequadrilateral
Edges and vertices4
Area
Propertiesconvex

In geometry, a trapezoid (/?tr?p?z??d/) in North American English, or trapezium (/tr??pi?zi?m/) in British English,[1][2] is a quadrilateral that has at least one pair of parallel sides.

The parallel sides are called the bases of the trapezoid.[3] The other two sides are called the legs[3] or lateral sides. If the trapezoid is a parallelogram, then the choice of bases and legs is arbitrary.

A trapezoid is usually considered to be a convex quadrilateral in Euclidean geometry, but there are also crossed cases. If shape ABCD is a convex trapezoid, then ABDC is a crossed trapezoid. The metric formulas in this article apply in convex trapezoids.

Definitions

edit

Trapezoid can be defined exclusively or inclusively. Under an exclusive definition a trapezoid is a quadrilateral having exactly one pair of parallel sides, with the other pair of opposite sides non-parallel. Parallelograms including rhombi, rectangles, and squares are then not considered to be trapezoids.[4][5] Under an inclusive definition, a trapezoid is any quadrilateral with at least one pair of parallel sides.[6] In an inclusive classification scheme, definitions are hierarchical: a square is a type of rectangle and a type of rhombus, a rectangle or rhombus is a type of parallelogram, and every parallelogram is a type of trapezoid.[7]

Professional mathematicians and post-secondary geometry textbooks nearly always prefer inclusive definitions and classifications, because they simplify statements and proofs of geometric theorems.[8] In primary and secondary education, definitions of rectangle and parallelogram are also nearly always inclusive, but an exclusive definition of trapezoid is commonly found.[9][10] This article uses the inclusive definition and considers parallelograms to be special kinds of trapezoids. (Cf. Quadrilateral § Taxonomy.)

To avoid confusion, some sources use the term proper trapezoid to describe trapezoids with exactly one pair of parallel sides, analogous to uses of the word proper in some other mathematical objects.[11][12]

Etymology

edit

In the ancient Greek geometry of Euclid's Elements (c.?300 BC), quadrilaterals were classified into exclusive categories: square; oblong (non-square rectangle); (non-square) rhombus; rhomboid, meaning a non-rhombus non-rectangle parallelogram; or trapezium (τραπ?ζιον, literally "table"), meaning any quadrilateral not already included in the previous categories.[13]

The Neoplatonist philosopher Proclus (mid 5th century AD) wrote an influential commentary on Euclid with a richer set of categories, which he attributed to Posidonius (c.?100 BC). In this scheme, a quadrilateral can be a parallelogram or a non-parallelogram. A parallelogram can itself be a square, an oblong (non-square rectangle), a rhombus, or a rhomboid (non-rhombus non-rectangle). A non-parallelogram can be a trapezium with exactly one pair of parallel sides, which can be isosceles (with equal legs) or scalene (with unequal legs); or a trapezoid (τραπεζοειδ?, literally "table-like") with no parallel sides.[13][14]

 
Hutton's definitions in 1795

All European languages except for English follow Proclus's meanings of trapezium and trapezoid,[15] as did English until the late 18th century, when an influential mathematical dictionary published by Charles Hutton in 1795 transposed the two terms without explanation, leading to widespread inconsistency. Hutton's change was reversed in British English in about 1875, but it has been retained in American English to the present.[13] Late 19th century American geometry textbooks define a trapezium as having no parallel sides, a trapezoid as having exactly one pair of parallel sides, and a parallelogram as having two sets of opposing parallel sides.[3][16] To avoid confusion between contradictory British and American meanings of trapezium and trapezoid, quadrilaterals with no parallel sides have sometimes been called irregular quadrilaterals.[17]

Special cases

edit
 
Trapezoid special cases. The orange figures also qualify as parallelograms.

An isosceles trapezoid is a trapezoid where the base angles have the same measure.[18][19] As a consequence the two legs are also of equal length and it has reflection symmetry.[20] This is possible for acute trapezoids or right trapezoids as rectangles. An acute trapezoid is a trapezoid with two adjacent acute angles on its longer base, and the isosceles trapezoid is an example of an acute trapezoid. The isosceles trapezoid has a special case known as a three-sided trapezoid, meaning it is a trapezoid wherein two trapezoid's legs have equal lengths as the trapezoid's base at the top.[21] The isosceles trapezoid is the convex hull of an antiparallelogram, a type of crossed quadrilateral. Every antiparallelogram is formed with such a trapezoid by replacing two parallel sides by the two diagonals.[22]

An obtuse trapezoid, on the other hand, has one acute and one obtuse angle on each base. An example is parallelogram with equal acute angles.[21]

A right trapezoid is a trapezoid with two adjacent right angle. One special type of right trapezoid is by forming three right triangles,[23] which was used by James Garfield to prove the Pythagorean theorem.[24]

A tangential trapezoid is a trapezoid that has an incircle.

Condition of existence

edit

Four lengths a, c, b, d can constitute the consecutive sides of a non-parallelogram trapezoid with a and b parallel only when[25]

 

The quadrilateral is a parallelogram when  , but it is an ex-tangential quadrilateral (which is not a trapezoid) when  .[26]

Characterizations

edit
 
general trapezoid/trapezium:
parallel sides:   with  
legs:  
diagonals:  
midsegment:  
height/altitude:  
 
trapezoid/trapezium with opposing triangles   formed by the diagonals

Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid:

  • It has two adjacent angles that are supplementary, that is, they add up to 180 degrees.
  • The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal.
  • The diagonals cut each other in mutually the same ratio (this ratio is the same as that between the lengths of the parallel sides).
  • The diagonals cut the quadrilateral into four triangles of which one opposite pair have equal areas.[27]
  • The product of the areas of the two triangles formed by one diagonal equals the product of the areas of the two triangles formed by the other diagonal.[28]
  • The areas S and T of some two opposite triangles of the four triangles formed by the diagonals satisfy the equation
 
where K is the area of the quadrilateral.[29]
  • The midpoints of two opposite sides of the trapezoid and the intersection of the diagonals are collinear.[30]
  • The angles in the quadrilateral ABCD satisfy  [31]
  • The cosines of two adjacent angles sum to 0, as do the cosines of the other two angles.[31]
  • The cotangents of two adjacent angles sum to 0, as do the cotangents of the other two adjacent angles.[32]
  • One bimedian divides the quadrilateral into two quadrilaterals of equal areas.[32]
  • Twice the length of the bimedian connecting the midpoints of two opposite sides equals the sum of the lengths of the other sides.[33]

Additionally, the following properties are equivalent, and each implies that opposite sides a and b are parallel:

  • The consecutive sides a, c, b, d and the diagonals p, q satisfy the equation[34]
 
  • The distance v between the midpoints of the diagonals satisfies the equation[35]
 

Properties

edit

Midsegment and height

edit

The midsegment or median of a trapezoid is the segment that joins the midpoints of the legs. It is parallel to the bases. Its length m is equal to the average of the lengths of the bases a and b of the trapezoid,[36][19][37][6]

 

The midsegment of a trapezoid is one of the two bimedians (the other bimedian divides the trapezoid into equal areas).

The height (or altitude) is the perpendicular distance between the bases.[3] In the case that the two bases have different lengths (ab), the height of a trapezoid h can be determined by the length of its four sides using the formula[38]

 

where c and d are the lengths of the legs and  .

Area

edit

The area   of a trapezoid is given by the product of the midsegment (the average of the two bases) and the height:   where   and   are the lengths of the bases, and   is the height (the perpendicular distance between these sides).[39] This method has been used in Aryabhata's Aryabhatiya in section 2.8 in the classical age of Indian, yielding as a special case the well-known formula for the area of a triangle, by considering a triangle as a degenerate trapezoid in which one of the parallel sides has shrunk to a point.

The 7th-century Indian mathematician Bhāskara I derived the following formula for the area of a trapezoid with consecutive sides  ,  ,  ,  ::   where   and   are parallel and  .[40] This formula can be factored into a more symmetric version[38]

 

When one of the parallel sides has shrunk to a point (say a = 0), this formula reduces to Heron's formula for the area of a triangle.

Another equivalent formula for the area, which more closely resembles Heron's formula, is[38]

 

where   is the semiperimeter of the trapezoid. (This formula is similar to Brahmagupta's formula, but it differs from it, in that a trapezoid might not be cyclic (inscribed in a circle). The formula is also a special case of Bretschneider's formula for a general quadrilateral).

From Bretschneider's formula, it follows that

 

The bimedian connecting the parallel sides bisects the area. More generally, any line drawn through the midpoint of the median parallel to the bases, that intersects the bases, bisects the area. Any triangle connecting the two ends of one leg to the midpoint of the other leg is also half of the area.[41]

Diagonals

edit

The lengths of the diagonals are   where   is the short base,   is the long base, and   and   are the trapezoid legs.[42]

If the trapezoid is divided into four triangles by its diagonals AC and BD (as shown on the right), intersecting at O, then the area of   AOD is equal to that of   BOC, and the product of the areas of   AOD and   BOC is equal to that of   AOB and   COD. The ratio of the areas of each pair of adjacent triangles is the same as that between the lengths of the parallel sides.[38]

If ? ? is the length of the line segment parallel to the bases, passing through the intersection of the diagonals, with one endpoint on each leg, then ? ? is the harmonic mean of the lengths of the bases:[43]

 

The line that goes through both the intersection point of the extended nonparallel sides and the intersection point of the diagonals, bisects each base.[44]

Other properties

edit

The center of area (center of mass for a uniform lamina) lies along the line segment joining the midpoints of the parallel sides, at a perpendicular distance x from the longer side b given by[45]

 

The center of area divides this segment in the ratio (when taken from the short to the long side)[46]:?p. 862?

 

If the angle bisectors to angles A and B intersect at P, and the angle bisectors to angles C and D intersect at Q, then[44]

 

Applications

edit
The trapezoidal rule for numerical integration
Example of a trapeziform pronotum outlined on a spurge bug

In calculus, the definite integral of a function   can be numerically approximated as a discrete sum by partitioning the interval of integration into small uniform intervals and approximating the function's value on each interval as the average of the values at its endpoints:   where   is the number of intervals,  ,  , and  . Graphically, this amounts to approximating the region under the graph of the function by a collection of trapezoids, so this method is called the trapezoidal rule.[47]

When any rectangle is viewed in perspective from a position which is centered on one axis but not the other, it appears to be an isosceles trapezoid, called the keystone effect because arch keystones are commonly trapezoidal. For example, when a rectangular building fa?ade is photographed from the ground at a position directly in front using a rectilinear lens, the image of the building is an isosceles trapezoid. Such photographs sometimes have a "keystone transformation" applied to them to recover rectangular shapes. Video projectors sometimes apply such a keystone transformation to the recorded image before projection, so that the image projected on a flat screen appears undistorted.

 
Piazza del Campidoglio viewed from directly above.

Trapezoidal doors and windows were the standard style for the Inca, although it can be found used by earlier cultures of the same region and did not necessarily originate with them.[48][49] An almena, a battlement feature characteristic of Moorish architecture, is trapezoidal.[50] Michaelangelo's redesign of the Piazza del Campidoglio (see photograph at right) incorporated a trapezoid surrounding an ellipse, giving the effect of a square surrounding a circle when seen foreshortened at ground level.[51] Cinematography takes advantage of trapezoids in the opposite way, to produce an excessive foreshortening effect from the camera viewpoint, giving the illusion of greater depth to a room in a movie studio than the set physically has.[52] Trapezoids were also used to produce the visual distortions of Caligarism.[52] Canals and drainage ditches commonly have a trapezoidal cross-section.

In biology, especially morphology and taxonomy, terms such as trapezoidal or trapeziform commonly are useful in descriptions of particular organs or forms.[53]

Trapezoids are sometimes used as a graphical symbol. In circuit diagrams, a trapezoid is the symbol for a multiplexer.[54] An isosceles trapezoid is used for the shape of road signs, for example, on secondary highways in Ontario, Canada.[55]

Non-Euclidean geometry

edit

In spherical or hyperbolic geometry, the internal angles of a quadrilateral do not sum to 360°, but quadrilaterals analogous to trapezoids, parallelograms, and rectangles can still be defined, and additionally there are a few new types of quadrilaterals not distinguished in the Euclidean case.

A spherical or hyperbolic trapezoid is a quadrilateral with two opposite sides, the legs, each of whose two adjacent angles sum to the same quantity; the other two sides are the bases.[56] As in Euclidean geometry, special cases include isosceles trapezoids whose legs are equal (as are the angles adjacent to each base), parallelograms with two pairs of opposite equal angles and two pairs of opposite equal sides, rhombuses with two pairs of opposite equal angles and four equal sides, rectangles with four equal (non-right) angles and two pairs of opposite equal sides, and squares with four equal (non-right) angles and four equal sides.

When a rectangle is cut in half along the line through the midpoints of two opposite sides, each of the resulting two pieces is an isosceles trapezoid with two right angles, called a Saccheri quadrilateral. When a rectangle is cut into quarters by the two lines through pairs of opposite midpoints, each of the resulting four pieces is a quadrilateral with three right angles called a Lambert quadrilateral. In Euclidean geometry Saccheri and Lambert quadrilaterals are merely rectangles.

edit
 
An example of trapezoidal number: 15 = 4 + 5 + 6

The trapezoidal number is a set of positive integers obtained by summing consecutively two or more positive integers greater than one, forming a trapezoidal pattern.[57]

The crossed ladders problem is the problem of finding the distance between the parallel sides of a right trapezoid, given the diagonal lengths and the distance from the perpendicular leg to the diagonal intersection.[58]

See also

edit
  • Frustum, a solid having trapezoidal faces
  • Wedge, a polyhedron defined by two triangles and three trapezoid faces.

Notes

edit
  1. ^ "Trapezoid – math word definition – Math Open Reference". www.mathopenref.com. Retrieved 2025-08-06.
  2. ^ Gardiner, Anthony D.; Bradley, Christopher J. (2005). Plane Euclidean Geometry: Theory and Problems. United Kingdom Mathematics Trust. p. 34. ISBN 9780953682362.
  3. ^ a b c d Hopkins 1891, p. 33.
  4. ^ Usiskin & Griffin 2008, p. 29.
  5. ^ Alsina & Nelsen 2020, p. 90.
  6. ^ a b Ringenberg, Lawrence A. (1977). "Coordinates in a Plane". College Geometry. R. E. Krieger Publishing Company. pp. 161–162. ISBN 9780882755458.
  7. ^ Alsina & Nelsen 2020, p. 89.
  8. ^ Usiskin & Griffin 2008, p. 32.
  9. ^ Craine, Timothy V.; Rubenstein, Rheta N. (1993). "A Quadrilateral Hierarchy to Facilitate Learning in Geometry". The Mathematics Teacher. 86 (1): 30–36. doi:10.5951/MT.86.1.0030. JSTOR 27968085.
  10. ^ Popovic, Gorjana (2012). "Who is This Trapezoid, Anyway?". Mathematics Teaching in the Middle School. 18 (4): 196–199. doi:10.5951/mathteacmiddscho.18.4.0196. JSTOR 10.5951/mathteacmiddscho.18.4.0196. ResearchGate:259750174.
  11. ^ Michon, Gérard P. "History and Nomenclature". Retrieved 2025-08-06.
  12. ^ Beem, John K. (2006). Geometry Connections: Mathematics for Middle School Teachers. Connections in mathematics courses for teachers. Pearson Prentice Hall. p. 57. ISBN 9780131449268.
  13. ^ a b c Murray, James (1926). "Trapezium". A New English Dictionary on Historical Principles: Founded Mainly on the Materials Collected by the Philological Society. Vol. X. Clarendon Press at Oxford. p. 286, also see "Trapezoid", pp. 286–287.
  14. ^ Morrow, Glenn R., ed. (1970). Proclus: A commentary on the first book of Euclid's Elements. Princeton University Press. §§ 169–174, pp. 133–137.
  15. ^ Conway, Burgiel & Goodman-Strauss 2016, p. 286.
  16. ^ Hobbs 1899, p. 66.
  17. ^ Davies, Charles (1873). The Nature and Utility of Mathematics. New York: A.S. Barnes & Company. p. 35.
  18. ^ Dodge 2012, p. 82.
  19. ^ a b Posamentier, Alfred S.; Bannister, Robert L. (2014). "The Trapezoid". Geometry, Its Elements and Structure: Second Edition. Dover Books on Mathematics (2nd ed.). Courier Corporation. §7.7, pp. 282–287. ISBN 9780486782164.
  20. ^ Hopkins 1891, p. 34.
  21. ^ a b Alsina & Nelsen 2020, p. 90–91.
  22. ^ Alsina & Nelsen 2020, p. 212.
  23. ^ Alsina & Nelsen 2020, p. 91.
  24. ^ Garfield, James (1876). "Pons Asinorum". New England Journal of Education. 3 (14): 161. ISSN 2578-4145. JSTOR 44764657.
  25. ^ Ask Dr. Math (2008), "Area of Trapezoid Given Only the Side Lengths".
  26. ^ Josefsson 2013, p. 35.
  27. ^ Josefsson 2013, Prop. 5.
  28. ^ Josefsson 2013, Thm. 6.
  29. ^ Josefsson 2013, Thm. 8.
  30. ^ Josefsson 2013, Thm. 15.
  31. ^ a b Josefsson 2013, p. 25.
  32. ^ a b Josefsson 2013, p. 26.
  33. ^ Josefsson 2013, p. 31.
  34. ^ Josefsson 2013, Cor. 11.
  35. ^ Josefsson 2013, Thm. 12.
  36. ^ Hobbs 1899, p. 58.
  37. ^ Dodge 2012, p. 117.
  38. ^ a b c d Weisstein, Eric W. "Trapezoid". MathWorld.
  39. ^ Dodge 2012, p. 84.
  40. ^ Puttaswamy, T. K. (2012). Mathematical Achievements of Pre-modern Indian Mathematicians. Elsevier. p. 156. ISBN 978-0-12-397913-1.
  41. ^ Hopkins 1891, p. 95.
  42. ^ Alsina & Nelsen 2020, p. 96.
  43. ^ Skidell, Akiva (1977). "The Harmonic Mean: A Nomograph, and some Problems". The Mathematics Teacher. 70 (1): 30–34. doi:10.5951/MT.70.1.0030. JSTOR 27960699.
    Hoehn, Larry (1984). "A Geometrical Interpretation of the Weighted Mean". Two-Year College Mathematics Journal. 15 (2): 135–139. doi:10.1080/00494925.1984.11972762 (inactive 1 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  44. ^ a b Owen Byer, Felix Lazebnik and Deirdre Smeltzer, Methods for Euclidean Geometry, Mathematical Association of America, 2010, p. 55.
  45. ^ "Centroid, Area, Moments of Inertia, Polar Moments of Inertia, & Radius of Gyration of a General Trapezoid". www.efunda.com. Retrieved 2025-08-06.
  46. ^ Apostol, Tom M.; Mnatsakanian, Mamikon A. (December 2004). "Figures Circumscribing Circles" (PDF). American Mathematical Monthly. 111 (10): 853–863. doi:10.2307/4145094. JSTOR 4145094. Retrieved 2025-08-06.
  47. ^ Varberg, Dale E.; Purcell, Edwin J.; Rigdon, Steven E. (2007). Calculus (9th ed.). Pearson Prentice Hall. p. 264. ISBN 978-0131469686.
  48. ^ "Machu Picchu Lost City of the Incas – Inca Geometry". gogeometry.com. Retrieved 2025-08-06.
  49. ^ Hyslop, John (2014). Inka Settlement Planning. University of Texas Press. p. 54. ISBN 9780292762640.
  50. ^ Curl 1999, p. 19, almena.
  51. ^ Curl 1999, p. 486, Michaelangelo Buonarroti.
  52. ^ a b Ramírez 2012, p. 84.
  53. ^ John L. Capinera (11 August 2008). Encyclopedia of Entomology. Springer Science & Business Media. pp. 386, 1062, 1247. ISBN 978-1-4020-6242-1.
  54. ^ Daniels, Jerry (1996). Digital Design from Zero to One. John Wiley & Sons. p. 203. ISBN 978-0-471-12447-4.
  55. ^ Alsina & Nelsen 2020, p. 93.
  56. ^ Petrov, F. V. (2009). Вписанные четырёхугольники и трапеции в абсолютной геометрии [Cyclic quadrilaterals and trapezoids in absolute geometry] (PDF). Matematicheskoe Prosveschenie. Tret’ya Seriya (in Russian). 13: 149–154.
  57. ^ Gamer, Carlton; Roeder, David W.; Watkins, John J. (1985). "Trapezoidal numbers". Mathematics Magazine. 58 (2): 108–110. doi:10.2307/2689901. JSTOR 2689901.
  58. ^ Alsina & Nelsen (2020), p. 102.

Bibliography

edit
  • Alsina, Claudi; Nelsen, Roger (2020). A Cornucopia of Quadrilaterals. Mathematical Association of America. ISBN 978-1-4704-5312-1.
  • Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2016). The Symmetries of Things. CRC Press. ISBN 978-1-4398-6489-0.
  • Curl, James Stevens (1999). A Dictionary of Architecture. Oxford University Press. ISBN 9780198606789.
  • Dodge, Clayton W. (2012). Euclidean Geometry and Transformations. Dover Books on Mathematics. Courier Corporation. ISBN 9780486138428.
  • Hobbs, Charles Austin (1899). The Elements of Plane Geometry. A. Lovell & Company.
  • Hopkins, George Irving (1891). Manual of Plane Geometry. D.C. Heath & Company.
  • Josefsson, Martin (2013). "Characterizations of trapezoids" (PDF). Forum Geometricorum. 13: 23–35. Archived from the original (PDF) on 16 June 2013.
  • Usiskin, Zalman; Griffin, Jennifer (2008). The Classification of Quadrilaterals: A Study of Definition. Information Age Publishing. pp. 49–52, 63–67.
  • Ramírez, Juan Antonio (2012). "Architecture and Desire: The character of film constructions". Architecture for the Screen: A Critical Study of Set Design in Hollywood's Golden Age. Translated by Moffitt, John F. McFarland. ISBN 9780786469307.

Further reading

edit
edit
五毒为什么没有蜘蛛 什么叫代孕 眩晕症什么症状 代谢慢是什么原因引起的 治字五行属什么
结石是什么原因造成的 什么直跳 人为什么要火化 神经元是什么 白蜡金命五行缺什么
林子大了什么鸟都有 白化病有什么危害吗 吊销驾驶证是什么意思 什么是气虚 乾隆为什么长寿
停电了打什么电话 97年的属什么生肖 男票是什么意思 宫颈管分离什么意思 梦到蛇是什么意思周公解梦
夫妻都是o型血孩子是什么血型hcv8jop0ns6r.cn 御姐是什么意思hcv8jop6ns3r.cn 磨牙齿有什么方法可以治hcv8jop7ns6r.cn 混合型高脂血症是什么意思hcv9jop5ns8r.cn 胃胀反酸吃什么药hcv9jop8ns2r.cn
最近我和你都有一样的心情什么歌hcv8jop4ns5r.cn 神是什么gangsutong.com 驾驶证b2能开什么车hcv9jop4ns5r.cn 钾低了会出现什么症状hcv8jop9ns6r.cn 为什么总打喷嚏hcv7jop9ns1r.cn
肺部检查应该挂什么科hcv8jop6ns5r.cn 代谢慢的人吃什么有助于新陈代谢hcv8jop0ns3r.cn 芒果对身体有什么好处hcv8jop4ns0r.cn 疤痕痒是什么原因kuyehao.com 什么是割包皮hcv9jop0ns0r.cn
口腔有异味是什么原因引起的hcv9jop6ns1r.cn 手指麻木什么原因hcv8jop3ns2r.cn 撕漫男是什么意思fenrenren.com 肛门里面有个肉疙瘩是什么hcv8jop8ns2r.cn 手发痒是什么原因hcv8jop3ns2r.cn
百度